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The construction of generalized models of a medium or field in the presence of 
internal degrees of freedom by using the fundamental variational equation is pre- 

sented within the scope of the general theory of relativity. Conditions at second- 
order discontinuities are considered for components of the metric tensor. 

A set of characteristic magnitudes with the related system of differential or, 
generally, functional equations for the determination of these is introduced in 
physical models of fields and continuous media. Some of the equations of this 
system are explicit expressions of known universal laws of conservation or are 

generalizations of these, while others are expressions of the kind of kinetic equa- 
tions or of equations of state. 

The construction of models and the statement ot the problem involves, in 
addition to these equations, the formulation of conditions at second - order dis- 
continuities within the region of a separated volume of medium and at its bound- 

aries. The latter can, also, be formulated as conditions of a continuous or dis- 
continuous contact of the given medium with separated external objects. In 
principle it is always possible to consider the conditions at the boundary as com- 
plete or simplified relationships at discontinuities in which the properties of a 
particular model and those of the model representing external media. Thus the 

conditions at second - order discontinuities or, in particular, those related to 
the continuity of contacts may be taken as the basis for establishing boundary 
conditions. 

The methods of derivation of conditions at discontinuities within a medium 
or at its boundaries by integral representation of the laws of conservation and 
passing to limit from continuous processes in a given medium, or from such pro- 
cesses and phenomena in more complex media, to discontinuous processes in 

that medium are well known. 
More sophisticated models whose volume elements are defined by a number 

of parameters, such as strain, mixture composition, structure of molecules and 
of their sets, dislocation properties, electromagnetic state, etc., are now being 
introduced in theoretical and practical applications. 

The presence of these parameters results in the appearance of new “dynamic 
equations” with an Increased number of conditions at first- and second-order 

discontinuities. 
Interpretation of the physical meaning of these parameters is provided in cer- 

tain cases by the formulation of macroscopic relationships which must be adoed 
to those already known in order to define the related parameters defining certain 
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classes of phenomena. A more detailed examination would show that it is preci- 

sely in this manner that the fundamental physical properties of any physical 

macroscopic magnitudes is established. 

Unified general regular methods related to fundamental physical theories were deve- 

loped in [l-6] for constructing models by deriving a closed system of equations and con- 

ditions at discontinuities. These systems are equivalent to the single fundamental varia- 

tional equation 

6$ Adz+PW*+6W=O (1’ 
VI 

where h is the prescribed Lagrangian function whose arguments are the parameters and 

their derivatives with respect to time and coordinates which independently define the 

physical state of an “elementary particle” in four-dimensional elementary volumes &c 

mentally isolated in any imaginary finite four-dimensional space-time volume v,. The 

specified functional cil$‘* may contain a volume integral over v, and surface integrals 

over z, the boundary of V,, and over the system of both sides of the discontinuity surface 

Sa which may exist within v,. The integrand of both integrals are linear functions of 

variations of the defining parameters. The presence of 6W* in Eq.(l) is associated 

with the interaction of the specified medium with external objects and also with the non- 

holonomic properties of the volume integral in 6W* due to the irreversible effects which 

may be also defined by Eq. (1). 

Variations of defining parameters on Z and S are in Eq.(l) non-zero. The additional 

term 6W in Eq.(l) is there for the purpose of compensating the related surface integrals 

in 6W* and the integrals resulting from the variation of the first volume integral, when- 

ever variations on the 2 -boundary are nonzero. 

For the simplest conventional models of physical media the magnitude 6W* can be 

defined by the following formula containing only the volume integral: 

6W* = s @T&S - F6r)dz (2) 
Vb 

where p is the medium mass density, T is the temperature, S is the entropy of a unit 

of mass, and F and 6r are four-dimensional vectors of the external ponderomotive 

force and the imaginary variation of shift at a given point,respectively. In three-dimen- 

sional treatment F6r represents the work of a three-dimensional volume force and the 

related energy input. 

If the viscosity properties of medium are taken into account, a surface integral defin- 

ing the work of viscosity stresses at the I: -surface appears in the expression for 6W* in 

addition to the to the volume integral. 

The variational equation (1) integrated over volume V, represents in the general case 

the complete energy equation with all energy exchanges taken into account for the vol- 
ume element dr and extended to any infinitely small imaginary variation of defining 

parameters. The actual time-dependent variations of the latter are replaced in this gen- 

eralized equation by imaginary variations. 

Whenever among the defining parameters there are successive derivatives with respect 

to time, then unlike in the energy equation, additional terms may appear in the varia- 

tional equation. In real processes these additional terms in the variational equation are 
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exactly zero, while in processes subject to variations such terms may not vanish and 

can materially affect relationships derived from (1). 

The relation of the fundamental equation to the conventional Lagrange variational 

principle and to the complete energy equation is defined by the underlying physical prin- 

ciples in the construction of the Lagrangian function A and of the functional 6W*. In 

particular, these data make it possible to apply methods and results of thermodynamics 

of irreversible processes to the determination of aW* (the conventional and general prin- 

ciples of Onsager, various kinds of experimentally confirmed principles of entropy max- 

imum or minimum or the increase of other magnitudes, the association law in the theory 

of plasticity, etc. ). 

As shown in the references cited above, the determination of the term 6wfor specif- 

ied A and 6W* makes it possible to readily establish in the general case the equations 

of state for a medium (generalized equations of the kind of Hooke’s law, of the laws of 

polarization and magnetization, etc. ). 

All of the foregoing general considerations and Eq.(l) can be applied in Newtonian 

mechanics, as well as within the scope of the special (STR) and the general (GTR) theory 

of relativity and of their further developments. 

Let us consider as the basic example the fundamental equation (1). which is of intrin- 

sic importance in the GTR, and find the related conditions at second-order discontinuities 

in a gravitational field. In connection with the considered theory we shall furthermore 

derive certain general notes which are of independent importance. 

In the GTR a space-temporal continuum is represented by a four-dimensional Rieman- 

nian space whose metric in the observer’s system of coordinates c?x~J?.x’ is represented 

by the quadratic form 
&2 - g, jdr,;d./,i (3) 

wheregij (&z~x%~) are components of the metric tensor. 

At every point of space this form (3) can be locally reduced to the Gallilean form (an 

orthogonal system of coordinates) 

ds2 = &t’ - (dy’)2 - (dy2)3 - (dy”)2 (‘i) 

where c is the speed of light and dt is an increment of time. 

The menic tensor components gij may be considered as the unknown parameters 

characterizing the internal degrees of freedom related to the properties of a physically 

defined Riemannian space. Since in the STR the space is a priori known, hence gi i 
are to be assumed known and, consequently, can be selected in a pseudo-Euclidean space 

to a certain extent arbitrarily. 

The symmetry of metric properties of a space is usually defined by the following sta- 

tement. 

The metric of a space is symmetric if there exists in it a nontrivial (transIormat1ulls 

other than identical or a simple change of sign are considered here) group of transform- 

ations z’~ == ‘pAi (z’z’z~z~) for which 

where gij (2”) and gij’ (~‘9 are,respectively, the original and the transformed components 

of the metric tensor. Subscript A denotes here elements of a group of transformations. 
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The systems of coordinates which satisfy relationships (5) are completely equivalent as 

regards the metric properties of space. 

Euclidean and pseudo-Euclidean spaces are symmetric, and in these an appropriate 

fixing of functions gij (x’) of the metric tensor provides whole classes of equivalent 

coordinate systems, hence it is impossible to isolate in this way a unique system of co- 

ordinates. All coordinate systems of the related class, particularly of those classes in 

which the metric is defined by (4) and which are derived by the Lorentz transformations, 

are geometrically (kinematically) equivalent. 

Since in the general case Riemannian spaces are nonsymmetric, the selection of app- 

ropriate functions &‘ij (x”) completely defines a unique system of coordinates; hence 

there are generally no metrically equivalent systems of coordinates in finite parts of 

Riemannian spaces of the general kind. 

However, metric (4),locallv introduced in a Riemannian space has in the pseudo- 

Euclidean space in contact with it all the properties of a pseudo-Euclidean space, and 

consequentlv is not uniquely defined. 
Riemannian spaces of various particular forms can, obviously, have the properties of 

symmetry and a metric invariant with respect to various related groups of symmetry 

transformations. 

In the STR the space is pseudo-Euclidean, and the class of equivalent inertial systems 

of coordinates conditionally introduced in it depending on their relationship with physical 

bodies isolated by special conditions. 

In the GTR every global system of coordinates is geometrically and physically uniquely 

defined owing to the absence of symmetry. 

Bt special local transformation of coordinates at every point of space it is, however, 

possible in the GTR to introduce in the contacting pseudo-Euclidean space the related 

metric (4) invariant with respect to Lorentz transformations. Owing to the invariant form 

of (4), such local transformations are not uniquely defined. 

The fundamental principle of the Gallileo-Newton relativity is defined by the state- 

ment that all laws of nature, expressed in the form of relationships between magnitudes 

in various observer’s systems of coordinates, retain their form in inertial systems of CO- 

ordinates. In the GTR this principle of relativity is locally formulated at any point of a 

Riemannian space in local coordinates (4). The latter are locar inertial coordinates 

analogous to the global inertial system of coordinates defined in the STR by physical 

bodies, e. g., the system of “fixed” stars. 

In Newtonian mechanics, as well as in the STR and the GTR, further assumptions are 

made with respect to certain fundamental magnitudes and relationships, determined 

beforehand in global or local inertial systems of coordinates, as to the conservation of 

their scalar, vector, or tensor properties in any system of coordinates. 

Numerous examples of specific magnitudes for which such assumptions are not valid. 

Hence it becomes necessary to introduce, as physical characteristics, magnitudes for 

which the stated above assumption (“the principle of covariance”) is satisfied. When the 

principle of covariance is satisfied, the tensor form of various physical relationships in 

the various isolated, equivalent or,generally,arbitrary systems of coordinates remain un- 

changed, although the actually written relationships or their individual terms may vary 

in different systems of coordinates. 

The actual determination of specific coordinate systems is made by using various 
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conditions and constructions, and in a metric space by making certain admissible parti- 
cular assumptions with respect to the form of functions gij (x1x2:223x4) for the components 
of the metric tensor. 

Since in a pseudo-Euclidean space the isolation of a specific system of coordinates is 
not possible on the basis of only geometric considerations, the actual definition of the 
coordinate system necessitates the establishment of the relation of the coordinate system 

to specific physical bodies. 
The determination of the concomitant coordinate system necessitates the definition 

of specific points in a certain physical or, generally, mentally defined medium. Such 

points can be specified for physical media by three Lagrangian coordinates E1E2E? and 

a similar time-dependent coordinate E 4 drawn along the world line corresponding to 
the considered point. The concomitant systems of coordinates can, obviously, be chosen 

with a certain degree of arbitrariness which can be removed by supplementary conditions. 
In the case of certain physically real or ideal media or bodies the specific observer’s 

system of coordinates x1~2~3~4 can be introduced as the concomitant coordinate systems, 

which are extended on specific conditions over the whole space, and chosen as bodies 
of the reference frame. 

In the nonsymmetric Riemannian space the observer’s system of coordinates can be 

uniquely defined by a purely geometric construction, in particular by specifying functions 
g;; (z?x~x~x~) which is admissible for any Riemannian space. 

It is, for example, possible to use synchronous coordinate systems in which a certain 
finite region of space containing point t020*~Oz~0 s the form of (3) is of the following 
special form: 

ds2 = c2dt2 + g,pdxadx@ (a, B = 1, 2,3) ((9 

A synchronous system of coordinates is uniquely defined, for components g,p (x1x2s3,t) 
the following supplementary conditions are specified: 

g,, (X12X3J,) = -1, g12(Z’Z2X3,t0) = g,s (&22, to) = 0 

g,, (5o152x3, to) = - 1, g,, (2011253, t,) = 0 

with git = gs2 = gas = -1at point ear, x02, Xo3, tO .The introduction of this system 
is based on the known Riemann theorem 173. 

Let in a given nonsymmetric Riemannian space she observer’s system of coordinates 
&r223x4 be uniquely defined, and let there be a certain medium containing points de- 
fined by coordinates E1E2E3E4. We then have 

ds2 : 7 gij (xk) dxidd = ^gpq (Ek) &peg (7) 

The transformation of coordinates 

xi = xi (pE253E4) (8) 

is nothing else but the law of motion of the given medium in the observer’s system of 
coordinates. In the general case the four functions (8) are uniquely defined by the follow- 
ing ten equations with partial derivatives: 
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provided that functions gif (x”) and gD4 (E”) are known and, in accordance with [7] 

relate to the metric of one and the same Riemannian space. 

Problems of mechanics can be reduced to finding functions gp4 (g’) and, consequently, 

to the determination of all metric properties of the Riemannian space. Having deter - 

mined these functions from the geometric conditions isolating the observer’s system of 

coordinates XL in a given space, we can find the transformation (8) and the components 

gij (xX). 
Hence, if the physical equations determining 2, rl (E”) can be formulated independe- 

ntly of the observer’s system of coordinates, i.e. , as the equations defining relationships 

which are independent of the selection of the observer’s system of coordinates ,x*, the 

equations of motion defining the law of motion (8) in mechanics will follow from the 

equation for gpq (t”) d 1 an re ationships (9) with the conditions for the selection of the 

observer’s coordinate system taken into account. These concepts may be used for substa- 

ntiating the known statement that the equations of momenta and energy are usually ob- 

tained as a corollary of Einstein’s equations of the gravitational field. The preceding 

reasoning makes it possible to extend this deduction to more general models in the field 

theory. 

However in the case of more general models the equations of the field theory may 

prove to be nonautonomous, i.e., they may contain characteristics of the law of motion 

(8). In such cases the properties of the physically or geometrically isolated observer’s 

system of coordinates may prove to be essential, since it is in that system that the fun- 

damental physical properties defining the laws of motion and the metric properties of 

space in particular are established. Hence in the case of more complex and, possibly, 

of simplified models (e.g., in the presence of the space-time metric symmetry) it is 

not possible to substitute equations of the law of motion for those of the field theory. 

This particular situation occurs in Newtonian mechanics and in the STR. In these theories 

the metric properties of space are simple and known, while the equations defining the 

law of motion of a medium are not simple consequences of the space metric properties, 

although the latter substantially affect the nature and form of these equations. 

In the case of Riemannian spaces which have the properties of symmetry the solution 

of equations of motion which can be derived equations of the field theory, it is, obviously, 

necessary to use certain conditions of the kind of initial conditions, which may not be 

required for solving equations of the field theory in the concomitant system of coordinates. 

In the construction of various models within the scope of the GTR we consider, in 

conformity with the principle of covariance, that L\. 6lv* and 6W are four-dimensional 

magnitudes representing scalar functional dependent on the components of the four-dim- 

ensional tensors appearing in the arguments in the form of invariant scalar combinations. 

Let us consider the variational equation (1) on the following particular assumptions. 

As the set of determining parameters we take in the observer’s system of coordinates 

.2 the following set of values: 

and the functions of the law of motion at the following points of the medium: 
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where pA are certain thermodynamic parameters, either scalars, or tensor components, 

defining the state of the medium (one of these can be the entropy or the temperature), 

and Fgj denote the corresponding products of Kroneker symbols 6,n dependent on the 

construction of the superscript A of the CL-* -components. Variables El, E2 and E” are 

the Lagrangian coordinates defining individual points of the metric space, E4 is the time 

coordinate along the world line, and KB (6”) are known predetermined functions (gener- 

alization of physical constants). 

The values 

gij (.ck), PA (,ch-), xi (E”) 

are taken as the unknown functions. We define the variations of the introduced magnit- 

udes by the equalities 

ZZ GA (j-ii) _ GA (xi) -I- iA (xi) - p* (xi) = ,$A + &k~kp* 

‘gii = ‘gij; 
a agii sag,; 

-=7; a 
aagii a’agij 

-Z 
ax:” a.r”asl axka.d 

dVipA = VidCL* + FgpBarij 

The validity of equalities 

6 f$ =‘xj’v(6xi - 6X’VlXji, where Vt,X:ji = 

where I?:, are Christoffel symbols, and of equalities 

(g = 1 gij 19 

6KB = 0, I~KB = - ViKBGXi, 6~1 = ah f 6XiVih 

can be readily ascertained. 

Let us consider models with h and 6W* of the following form: 

A = A (R, g,j, PA, VfiPA, .rji, KB) 

6w” = - s hf_,&*& 

VI 

(10) 

(11) 

In this case for 6W we obtain the formula 

6~ = s (TiJiagij + Gijk F + &fAkGpA f Pik6rfj nkOh 
r. 

(12) 

where n k are covariant components of the external unit vector normal to surface 2 

bounding volume V,. Tensors Tik’, Giik, ibf~~ and PiK’ are to be determined, and R 
is the scalar curvature of the Riemannian space 
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The following formulas: 

aR = - RWgij + VOW’, vlW’ = gi@Rij 

W’ = (gi@, l- gi@, ‘) arijs = (gikgG - gijglh-) vkagij 

are valid for the variations of R . 
Using the derived variation formulas, we carry out variation in Eq. (1) and from the 

volume integral obtain the following Euler equations: 

for f3Rij 

(13) 

- &ijah 

atz 
_.,_ +_ gijLl _I_ a_ _ VqBiiq _ (giigqk _ giqgjh-) vpvk $ = 0 

1 

where Bijq = --& (B-4” -j- Bfq), and 

Equation (13) is a generalization of equations of Einstein’s GTR, Depending on the 
form of functions ~A/cYR , Eq. (13) may contain up to fourth-order derivatives of the 

metric tensor components. 
After variation of h and integration by parts, for 6w we obtain 

6~ = _ s {[Bilk + (gijgkl - gikglj) vl $$ 1 agij - $$(gijgkl- (15) 
x+st ,- 

- gilgkj) Vldgij -t_ 

where 2 is the three-dimensional boundary of V, and ,‘j’ is the three-dimensional surface 

of a second-order discontinuity within the V,-volume. Integration over S is carried 

out over both sides of this surface. 

According to the general theory [4, S] the first two terms of the surface integral which 

contain variations dgij and VidL?ij can be reduced to the form of formula (12). To 

achieve this transformation in a simple manner we use a special system of coordinates 

in which at a given point of surface 2 or S the coordinate conditions specified below 

are satisfied. 

The coordinate axis it_’ is directed along the vector of the normal to I: or S (vector 

n. at points of surface J2 or S is directed outward from volume v,) ; the remaining 

coordinate lines at the given point are orthogonal to n and lie in a plane tangent to x 

or s. Here we limit our analysis to points at which the normal is anisotropic, i.e., 

US, # U and the Z - and S -surfaces are smooth. In such system of coordinates the 
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quadratic form (3) is reduced at points of Z or S to the form 

d.9 = g11d.G2 + gapdx=dzQ (a, p = 2,394) (16) 

Owing to the smoothness of the 2 - and S -surfaces at the considered points of these 
surfaces we have the following equalities: 

let us examine the results of transformation of the integrand in formula (15) for a 
given point of surface 2 in the described above special system of coordinates. Owing 

to the arbitrariness of related variations and of the 2 -surface, after equating (12) and 

(15) we obtain 

_ Trtknk = giiknk + _1- @P ag,, 
2g as,g 

11 ah 
aR 

- TIYknk = .- T-flknk = BIYknk _ _ 

-Tapk?Zk = Bafiknk + g.@ 
a (aA/i3R) i an ag@P 

as, - 2~ as, 

(17) 

Here and in the following a, p and y z 2,3,4,and dS,a = glldx12 is the invariant 

interval (*) along the normal to x . For an area element of 2 we have do = v/F 

dx2d2dz4, where 
G = I gap I = $q 

We further have 

Gtrknk = G+knk = c_Ivknk =O, 
aA GaQknk = -g”@ 
8H (18) 

Moreover, owing to the arbitrariness of 6pA, 6x{ and 2 , and independently of the 
coordinate system selection, we have 

- MAk = ah/aVkpA (19) 
and 

(20) 

Formulas (17) - (20) can be considered as equations of state which together with the 
energy-momentum tensor Pi’ - the four-dimensional generalization of the conventional 
three-dimensional internal stress tensor - define the new tensors MAP, Tijk and Qik 
which’determine internal interactions in a field and in a medium @, 31. 

In view of the arbitrariness of volume v4 and owing to the assumed arbitrariness of 

functions x continuous on S and of variations agij, dag,J8S,, GpAand tii, we obtain 
with the use of formulas (17) - (20) from the integral over the two sides of surface S 
the following conditions at a discontinuity at points of surface Si: 

l ) In the general theory, when g,, < 0, the interval ds, is purely imaginary. Since the 
products appearing in the integrands are always real, there is no need to use only real 

definitions for as, nk and da. 
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[ T’jQL, f/G],” = 0 iW 
1 Gijk< )@I I2 = 0 (22) 
[M_,+‘(nk ,@I,2 = 0 (23) 
[Piknk 1/6]12 = 0 (24) 

The vector of normal n is directed here from side 2 to side 1, and indices 1 and 2 in 
the notation [Ali = A, - A, denote different side of surface S. 

In the derivation of equalities (21) - (24) allowance is made for the continuity of co- 
ordinates zi and of their derivatives on surface s. although the metric and the area 
elements do = V’C;dx2dx3dx4 can be discontinuous. 

The assumption of continuity of the xi-coordinate and of variations ‘agij, aagij / 
!dS,,, 6pA and 6xi at intersection of ~9 is bound with the assumption of absence of in- 

ternal discontinuities, such as cracks or dislocations within the medium, and with the 
essential requirement for the conditions at discontinuities to reduce to identities when 
there is no second-order discontinuity at the S -surface. Conditions (24) obviously coin- 
cide with the usual equations of momentum and energy conservation at a discontinuity. 

Conditions (23) apply only when function 11 depends on gradients VkpA and on certain 

parameters PA. The tensor properties and the related invariance of relationships (21) - 
(24) follow from the assumption of the continuity of differentials dcf and on the scalar 

nature of d cd r2d Pd r4 -= ds. 
Relationships (21) and (22) imply the imposition at discontinuities of certain conditions 

on the components of the metric tensor. In the case of continuous transformation of co- 
ordinate systems the actual relationships derived from conditions (21) and (22) can change 
their form, if the transformed derivatives of coordinates with respect to original coordi- 
nates become discontinuous at intersections with the s-surface. The derivatives d.c* / 

atK are generally discontinuous at the S -surface, hence conditions (21) and (22) depend 
on the observer’s system of coordinates at different sides of that surface. 

The introduction of the special coordinates in which formulas (17) and (18) were de- 
rived is linked with the coordinate transformations with discontinuous derivatives along 
s 

Conditions (21) essentially depend on the presence among the iI -arguments of grad- 
ients of parameters p,* . However the presence of these may have no effect whatsoever, 
if the expressions @Jtnk are continuous at S. 

In the GTR proposed by Einstein we have 

h=&H+h, (25) 

where x is the dimensionless gravitational constant and A,,, is the Lagrange function 
for a medium and an electromagnetic field independent of K. If it is further assumed 
that parameters pA are absent or that the expressions 

I/&!BW, 
k Gw 

are continuous, then the conditions at discontinuities (21) and (22) reduce to the very 

simple form 

(27) 
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I 1/cg]=o, [ pg”q = 0 

It will be readily seen that these conditions together with the adopted system of coord- 
inates are equivalent to the requirement for the absence of second-order discontinuities 

of all metric tensor components and of derivatives of components gap witn respect to 

% This conclusion is, however, dependent on the specific form of formula (25) with 
constant coefficient X and on the continuity condition (26). These properties may not 
necessarily exist in some of the new models. 

Moreover, by virtue of (18) it follows from (22) that in the chosen system of coordin- 
ates the derived here conditions of continuity of components gab and g,p remain valid 

at S provided BAIaR is continuous a t S and, in particular, that h is of the form (25). 

The obtained continuity of the metric tensor components will be violated in other 
systems of coordinates derived from the introduced special system of coordinates by tran- 

sformations with discontinuous derivatives at the S -surface. 
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